Задача А. НОД для многочленов

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Для двух данных многочленов $P(x), Q(x) \in \mathbb{Z}_p[x]$ ($p = 10^9 + 7$) требуется вычислить их наибольший общий делитель G(x). Наибольшим общим делителем двух многочленов называется многочлен, который удовлетворяет следующим свойствам:

- G(x) приведенный, то есть коэффициент при старшем члене равен 1;
- G(x) делит оба многочлена и P(x), и Q(x);
- \bullet G(x) имеет наибольшую степень среди всех подходящих многочленов.

Формат входных данных

В первой строке указано число t ($1 \le t \le 10^4$) — количество наборов входных данных.

В первой строке каждого набора указана пара чисел n и m $(1 \le n, m \le 1\,000)$ — степени многочленов P(x) и Q(x).

Во второй строке набора указаны числа $a_0, \ldots, a_n \ (0 \le a_i \le 10^9 + 6)$.

В третьей строке набора указаны числа $b_0, \ldots, b_m \ (0 \le b_i \le 10^9 + 6)$.

Гарантируется, что:

- $P(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$;
- $Q(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_m x^m$;
- $a_n \neq 0, b_m \neq 0.$
- Сумма $n \cdot m$ по всем наборам входных данных не превосходит 10^6 .

Формат выходных данных

Для каждого набора входных данных выведите в отдельной строке коэффициенты многочлена G(x) от младшего к старшему.

стандартный ввод	стандартный вывод
3	1 1
2 2	2 1
1 2 1	1
2 3 1	
1 1	
10 5	
14 7	
2 2	
10 1	
13 1	

Задача В. Сколько есть корней?

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан многочлен $P(x) = a_0 + a_1 x + \ldots + a_n x^n$ с целочисленными коэффициентами. Вычислите количество чисел z от 0 до p-1 ($p=10^9+7$) таких, что P(z) делится на p.

Формат входных данных

В первой строке указано число t ($1 \le t \le 10^4$) — количество наборов входных данных. В первой строке каждого набора указано число n ($1 \le n \le 1\,000$) — степень многочлена P(x). Во второй строке перечислены числа a_0, \ldots, a_n ($0 \le a_i \le 10^9 + 6, a_n \ne 0$) — коэффициенты P(x). Гарантируется, что сумма n^2 по всем наборам входных данных не превосходит 10^6 .

Формат выходных данных

Выведите единственное число — ответ на задачу.

стандартный вывод
1
2
5
0

Задача С. Поиск корней

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан многочлен $P(x) = a_0 + a_1 x + \ldots + a_n x^n$ с целочисленными коэффициентами.

Найдите все z от 0 до p-1 ($p=10^9+7$) такие, что P(z) делится на p.

Формат входных данных

В первой строке указано число $t\ (1\leqslant t\leqslant 1\,000)$ — количество наборов входных данных.

В первой строке каждого набора указано число $n \ (1 \le n \le 1000)$ — степень многочлена P(x).

Во второй строке перечислены числа $a_0,\dots,a_n\ (0\leqslant a_i\leqslant 10^9+6,\,a_n\neq 0)$ — коэффициенты P(x).

Гарантируется, что сумма n^2 по всем наборам входных данных не превосходит 10^6 .

Формат выходных данных

Для каждого набора выведите сначала количество найденных корней P(x), а в следующей строке сами корни в отсортированном порядке.

стандартный ввод	стандартный вывод
4	1
2	100000006
1 2 1	2
2	100000005 100000006
2 3 1	5
5	1 2 3 4 5
999999887 274 999999782 85 999999992 1	0
2	
1 1 1	
1 1 1	

Задача D. SQRT по хорошим модулям

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Даны n пар a_i, p_i . Гарантируется, что:

- $1 \leqslant a_i \leqslant p_i 1$;
- p_i простое число;
- $p_i \mod 4 = 3$.

Для каждого i требуется найти наименьшее натуральное число b_i такое, что $b_i^2 \equiv a_i \pmod p$. Не стесняйтесь использовать __int128 для решения этой задачи.

Формат входных данных

В первой строке указано число $n\ (1\leqslant n\leqslant 10^5)$ — количество пар.

В последующих n строках указаны пары чисел a_i и p_i $(1 \leqslant a_i \leqslant p_i \leqslant 10^{18})$.

Формат выходных данных

Для каждой пары выведите искомое число b_i , если такого числа не существует, то выведите -1.

стандартный ввод	стандартный вывод
3	1
1 3	-1
2 3	3
2 7	

Задача E. SQRT по плохим модулям

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Даны n пар a_i, p_i . Гарантируется, что:

- $1 \leqslant a_i \leqslant p_i 1$;
- p_i простое число;
- $p_i \mod 4 = 1$.

Для каждого i требуется найти haumehbuee натуральное число b_i такое, что $b_i^2 \equiv a_i \pmod p$. Не стесняйтесь использовать __int128 для решения этой задачи.

Формат входных данных

В первой строке указано число $n\ (1\leqslant n\leqslant 10^5)$ — количество пар.

В последующих n строках указаны пары чисел a_i и p_i ($1 \le a_i \le p_i \le 10^{18}$).

Формат выходных данных

Для каждой пары выведите искомое число b_i , если такого числа не существует, то выведите -1.

стандартный ввод	стандартный вывод
3	1
1 5	-1
2 5	4
3 13	

Задача F. ZP

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Самолет-самолет-самолет-самолет-самолет. Как же про тебя написать условие задачи? Как тебя впихнуть в задачу, где и близко нет самолетов? Самолет-самолет-самолет.

Несложно понять, что любой самолет можно представить в виде тройки чисел (a, b, c). Будем говорить, что самолет удовлетворяет сертификату качества p, если выполняются следующие условия:

- $0 \le a, b, c < p$ и числа a, b, c попарно различные;
- abc 1 и a + b + c делятся на p.

Для **простого** числа p вам следует найти любую тройку чисел (a,b,c), которая удовлетворяет сертификату качества p, либо сказать, что такой тройки не существует.

Формат входных данных

В первой строке указано число t $(1 \le t \le 10^5)$ — количество наборов входных данных.

Каждый набор входных данных описывается единственной строкой, в которой указано единственное целое простое число p ($3 \le p \le 10^9$).

Формат выходных данных

Для каждого набора входных данных выведите либо подходящую тройку (a, b, c), либо -1, если такой тройки не существует.

стандартный ввод	стандартный вывод
9	-1
3	4 2 1
7	8 4 10
11	3 1 9
13	140 16 67
223	228 3303 436
3967	228 6453 9446
16127	12228 402737 631562
1046527	2045228 1664119 13059676
16769023	

Задача G. Первообразный корень

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дано простое число p. Найдите минимальное число g, являющееся первообразным корнем по модулю p.

Формат входных данных

В единственной строке дано простое число $p\ (1 \le p \le 10^9)$.

Формат выходных данных

Выведите наименьший первообразный корень по модулю p, либо -1, если по модулю p не существует первообразного корня.

стандартный ввод	стандартный вывод
2	1
3	2
5	2

Задача Н. Дискретное логарифмирование

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вам требуется написать программу, которая для заданного $1 \le a \le 10^9 + 8$ находит минимальное неотрицательное целое число x, которое удовлетворяют уравнению:

$$13^x \equiv a \pmod{10^9 + 9}$$

Формат входных данных

В первой строке указано число $t~(1\leqslant q\leqslant 500)$ — количество наборов входных данных.

В последующих q строках записаны числа $a_1,\dots,a_q,$ для которых требуется решить уравнение.

Формат выходных данных

Для каждого набора входных данных в отдельной строке выведите минимальное значение x, которое является решением уравнения.

Пример

стандартный вывод
0
1
2
976796272

Замечание

Хоть это и упрощенная версия задачи, но мы не гарантируем, что решение за $O(q\sqrt{p}\log p)$ с использованием std::map и бинарного возведения в степень будет работать за вменяемое время. У вас остается только один выход — аккуратно реализовать $O(\sqrt{pq})$.

Также обратите внимание, что 13 — первообразный корень по модулю $10^9 + 9$, так что ответ всегда существует.

Задача І. Дискретное логарифмирование

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вам требуется написать программу, которая для заданного $1 \le a \le 10^9 + 8$ находит минимальное неотрицательное целое число x, которое удовлетворяют уравнению:

$$13^x \equiv a \pmod{10^9 + 9}$$

Формат входных данных

В первой строке указано число t ($1 \le t \le 40\,000$) — количество наборов входных данных.

В последующих t строках записаны числа a_1, \ldots, a_t , для которых требуется решить уравнение.

Формат выходных данных

Для каждого набора входных данных в отдельной строке выведите минимальное значение x, которое является решением уравнения.

стандартный ввод	стандартный вывод
4	0
1	1
13	2
169	976796272
5	

Задача Ј. Отстойные подарки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Родственники на день рождения подарили вам p-1 число $(p-\text{простое}): 1, 2, \dots, p-1$.

Подарок отстойный, но родители вас все равно заставили разложить его красиво по полкам и поблагодарить родственников. Всего в вашей комнате есть k полок, на каждой из которых вы должны расположить $\frac{p-1}{k}$ подарков. Разложение считается хорошим, если сумма чисел на каждой из полок делится на p.

Формат входных данных

В единственной строке указана пара чисел p и k ($5 \leqslant p \leqslant 10^6$, $2 \leqslant k \leqslant p-2$, k делит p-1). Гарантируется, что p — простое число.

Формат выходных данных

Выведите k строк, которые содержат по $\frac{p-1}{k}$ чисел.

стандартный ввод	стандартный вывод
13 3	1 5 8 12
	2 3 10 11
	4 6 7 9
17 4	1 4 13 16
	6 7 10 11
	3 5 12 14
	2 8 9 15

Задача К. Кушвинки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Имеется круг из n кувшинок, пронумерованных от 0 до n-1. В начальный год на кувшинке с номером i находится a_i лягушек.

Каждый год происходит следующее:

- \bullet Перед смертью каждая лягушка, находившаяся на кувшинке i, производит k детёнышей.
- Лягушата не очень то и хотят жить с трупом своего родителя, поэтому j-й детеныш очередной лягушки прыгает на кувшинку с номером $(i+j) \bmod n$.
- В следующем году все детёныши становятся взрослыми лягушками, и цикл повторяется.

Процесс продолжается t лет.

Требуется определить, сколько лягушек будет находиться на каждой из n кувшинок спустя t лет. Так числа в ответе могут быть слишком большими, то требуется вычислить их остатки при делении на $10^9 + 7$.

Формат входных данных

Первая строка содержит три целых числа n ($3 \le n \le 1000$), k ($1 \le k \le n-1$), t ($1 \le t \le 10^{18}$) — количество кувшинок, детей у каждой лягушки и количество лет, которые все это происходит.

Вторая строка содержит n целых чисел a_0, a_1, \ldots, a_n $(0 \leqslant a_i \leqslant 10^9)$ – исходное количество лягушек на каждой из клеток.

Формат выходных данных

Выведите n целых чисел — количество лягушек на каждой кувшинке после t лет процесса по модулю 10^9+7 .

стандартный ввод	стандартный вывод
5 2 2	0 0 1 2 1
1 0 0 0 0	
3 3 123123123 1 0 0	578039232 578039232 578039232