Задача А. Гигантский Пингвин

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 512 мегабайт

 $\operatorname{Pengsoo}$ — крайне популярный гигантский Корейский пингвин. Он очень невоспитанный и любит пить.

Сейчас Pengsoo очень занят — он отвечает на запросы в очередной задаче на графы.

У него есть связный неориентированный граф, в котором каждая **вершина** лежит не более, чем на k вершино-простых циклах.

Он хочет отвечать на запросы двух типов.

- Пометить вершину v.
- Найти ближайшую помеченную вершину для вершины v (гарантируется, что на момент данного запроса в графе имеется хотя бы одна помеченная вершина).

Pengsoo очень ленивый, поэтому он решил вздремнуть и попросил вас ответить на данные запросы. Если вы не справитесь до того, как он проснется, он будет над вами издеваться, так что поторопитесь!

Формат входных данных

В первой строке записаны три числа n, m, k $(1 \le n \le 100\,000, n-1 \le m \le 200\,000, 0 \le k \le 10)$ — количество вершин, ребер и максимальное количество вершинно-простых циклов, проходящих через одну вершину.

В следующих m строках содержится описание ребер. В i-й строке записаны два числа u_i, v_i $(1 \le u_i, v_i \le n, u_i \ne v_i)$, означающие, что в графе есть ребро между вершинами u_i и v_i .

Гарантируется, что в графе нет красных ребер, граф является связным и каждая вершина лежит не более, чем на k вершинно-простых циклах.

В следующей строке записано число $q\ (1\leqslant q\leqslant 200\,000)$ — количество запросов.

В каждой из следующих q строк содержится описание запроса. В i-й строке записаны два числа $t_i, v_i \ (1 \leqslant t_i \leqslant 2, 1 \leqslant v_i \leqslant n).$

Если $t_i = 1$, пометьте вершину v_i . Гарантируется, что данная вершина не была помечена ранее.

Если $t_i = 2$, найдите расстояние до ближайшей помеченной вершины от вершины v_i . Гарантируется, что в графе уже есть хотя бы одна помеченная вершина.

Формат выходных данных

Для каждого запроса с $t_i=2$ выведите расстояние до ближайшей помеченной вершины.

Примеры

стандартный ввод	стандартный вывод
5 4 0	0
1 2	1
2 3	2
3 4	1
4 5	0
7	
1 1	
1 5	
2 1	
2 2	
2 3	
2 4	
2 5	
5 6 2	2
1 2	2
2 3	
1 3	
3 4	
4 5	
3 5	
3	
1 1	
2 4	
2 5	

Задача В. Автобус и Деревни

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 4 секунды Ограничение по памяти: 1024 мебибайта

В стране Байтландии n городов, соединённых n-1 двусторонней дорогой, формально Байтландия представлена деревом. Города пронумерованы целыми числами от 1 до n, дороги числами от 1 ло n-1.

Дорога номер i соединяет города (i+1) и p_i и имеет длину l_i метров. Также вдоль i-й дороги расположено k_i деревень, расположенных на расстоянии $0 < x_{i,1} < \ldots < x_{i,k_i} < l_i$ метров от города i+1.

В стране произвели автобус с запасом хода w метров и хотят соединить как можно больше деревень. Формально, надо выбрать две концевые точки, которые могут быть как в городе, так и на дороге. Автобус будет двигаться по единственному простому пути между этим точками. Длина этого пути должна не превосходить w метров. Вам требуется найти максимальное количество деревень, которые встретятся на пути автобуса, если его выбрать оптимально.

Формат входных данных

В первой строке заданы два числа $n, w \ (2 \leqslant n \leqslant 250000) (1 \leqslant w \leqslant 10^{18}) \ -$ кол-во городов и запас хода автобуса.

В i-й из следующих n-1 строках расположено по $3+k_i$ чисел: $p_i, l_i, k_i, x_{i,1}, \ldots, x_i, k_i$ $(1 \le p_i \le i)(0 \le k_i \le 10^6)(0 < x_{i,1} < \ldots x_{i,k_i} < l_i \le 10^{12})$ — описание i-й дороги. Гарантируется, что сумма k_i не превосходит 10^6 .

Формат выходных данных

Выведите единственное число — ответ на задачу.

Примеры

стандартный ввод	стандартный вывод
4 2	2
1 2 1 1	
1 610 2 1 100	
3 2001 0	
2 2	1
1 2 1 1	
8 6	4
1 2 1 1	
1 3 2 1 2	
2 1 0	
3 4 1 2	
2 3 1 1	
1 4 1 3	
3 4 1 1	

Задача С. Очередная задача на запросы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 5 секунд

Ограничение по памяти: 1024 мегабайта

Дано взвешенное дерево на n вершинах, пронумерованных целыми числами от 1 до n.

Также дана перестановка вершин p_1, \ldots, p_n .

Требуется отвечать на запросы двух видов:

- 1 $l \ r \ v$: Посчитать $\sum_{i=l}^{r} \operatorname{dist}(p_i, v)$.
- 2 i: поменять местами p_i и p_{i+1} .

Запросы будут **закодированы**, чтобы решение работал **онлайн**. То есть, на вход будут подавать параметры \hat{i},\hat{l},\hat{r} . В то время, как реальные значения будут задаваться следующим соотношением, где lastans — ответ на последний запрос вида 1, или 0 если таких запросов ещё не было.

$$x = (lastans \bmod 2^{30}) \oplus \hat{x}$$

Формат входных данных

В первой строке задано два числа $n,q \ (2\leqslant n,q\leqslant 2\cdot 10^5)\$ — кол-во вершин и кол-во запросов.

Во второй строке задано n различных чисел p_1, \ldots, p_n : $(1 \leqslant p_i \leqslant n)$ — перестановка вершин.

В следующих n-1 строках задано по три числа u,v,w $(1\leqslant u,v\leqslant n)(1\leqslant w\leqslant 10^6)$ — описание дорог.

В следующих q строках заданы закодированные запросы $(0 \leqslant \hat{l}, \hat{r}, \hat{v}, \hat{i} < 2^{30})$ $(1 \leqslant l, r, v \leqslant n)$ $(1 \leqslant i < n)$, в одном из следующих форматов:

- 1 \hat{l} \hat{r} \hat{v}
- 2 î

Формат выходных данных

Для каждого запроса типа 1 выведите требуемую сумму.

Пример

стандартный ввод	стандартный вывод
5 5	23
4 5 1 3 2	37
4 2 4	28
1 3 9	
4 1 4	
4 5 2	
1 1 5 4	
1 22 20 20	
2 38	
2 39	
1 36 38 38	