Задача А. Число уникальных

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Посчитайте число уникальных элементов в массиве используя либо конструктор std::set, либо std::sort + std::unique. Циклами в этой задаче запрещено пользоваться в том числе для ввода и вывода.

Формат входных данных

В первой строке ввода дано одно целое число $1\leqslant n\leqslant 10^5$ — количество элементов в массиве. Во второй строке дано n чисел $-10^9\leqslant a_i\leqslant 10^9$ — элементы массива.

Формат выходных данных

В первой строке выведите одно число — число уникальных элементов массива. Во второй строке выведите сами элементы в отсортированном по возрастанию порядке.

стандартный ввод	стандартный вывод
3	3
1 2 3	1 2 3
4	2
1 2 1 2	1 2

Задача В. Все циклические сдвиги

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан массив a длины n. Выведите все его циклические сдвиги в отсортированном порядке.

Формат входных данных

В первой строке записано одно число $1 \le n \le 1000$ — длина массива. Во второй строке n чисел — элементы массива. Все элементы массива — это числа на отрезке $[-10^9; 10^9]$.

Формат выходных данных

Выведите n строк. В каждой циклический сдвиг массива a. Сдвиги должны быть выведены в лексикографическом порядке.

стандартный ввод	стандартный вывод
5	1 2 3 4 5
1 2 3 4 5	2 3 4 5 1
	3 4 5 1 2
	4 5 1 2 3
	5 1 2 3 4
4	1 4 2 4
1 4 2 4	2 4 1 4
	4 1 4 2
	4 2 4 1

Задача С. Все вхождения

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Даны две строки из строчных букв латинского алфавита s и t. Нужно вывести все позиции вхождения строки t в зацикленную строку s. Индексация позиций с 1.

Формат входных данных

В первой строке записана строка s из строчных латинских букв, такая что $1\leqslant |s|\leqslant 10^3$. Во второй строке записана строка t из строчных латинских букв, такая что $1\leqslant |t|\leqslant |s|$.

Формат выходных данных

Выведите все позиции вхождения строки t в зацикленную строку s.

стандартный ввод	стандартный вывод
abcabdabc	3 9
cab	
aaa	1 2 3
aa	
ccc	1 2 3
ссс	

Задача D. Прочитайте без цикла и рекурсии

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Требуется прочитать массив не используя цикла или рекурсии. Затем необходимо посчитать сначала сумму всего массива, а уже только после этого все префиксные суммы массива. Разрешено пользоваться только функциями из STL.

Формат входных данных

В первой строке ввода дано одно целое число $1 \leqslant n \leqslant 10^5$ — количество элементов в массиве. Во второй строке дано n чисел $-10^9 \leqslant a_i \leqslant 10^9$ — элементы массива.

Формат выходных данных

В первой строке выведите одно число — сумму всего массива. Во второй строке выведите $\mathrm{n}+1$ число — префиксные суммы массива.

стандартный ввод	стандартный вывод
2	5
2 3	0 2 5
4	6
0 1 2 3	0 0 1 3 6