Задача А. Префиксные суммы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вам дан массив a, состоящий из целых чисел a_1, \ldots, a_n и целое число x.

Вам нужно ответить на q запросов следующего вида: для данных чисел l и r ($l \le r$) правда ли, что сумма чисел на отрезке [l;r] в массиве равна x.

Формат входных данных

В первой строке входных данных содержатся 3 целых числа n, q и x $(1 \le n, q \le 10^5, -10^9 \le x \le 10^9).$

Во второй строке входных данных содержатся n целых чисел $a_1, \ldots, a_n \ (-10^9 \leqslant a_i \leqslant 10^9)$. Следующие q строк содержат описание запросов.

В *i*-й строке содержатся два целых числа l_i и r_i ($1 \le l_i \le r_i \le n$), описывающие *i*-й запрос.

Формат выходных данных

Выведите q строк. В i-й строке выведите «Yes», если сумма на отрезке $[l_i, r_i]$ действительно равна x, и выведите «No» иначе.

Система оценки

Подзадача	Ограничения		Баппы	Необходимые подзадачи
Подзадача	n	q	Danibi	пеооходимые подзадачи
1	$n \leqslant 1000$	$q \leqslant 1000$	30	_
2	_	_	70	1

Пример

стандартный ввод	стандартный вывод		
5 4 6	Yes		
1 5 1 -2 6	Yes		
1 2	No		
2 3	Yes		
1 4			
5 5			

Задача В. Даня и первый снег

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

В Москве выпал первый снег, и вся площадка перед домом Дани теперь заполнена снегом. Площадку можно представить как прямоугольник, состоящий из n строк и m столбцов, где в ячейке с координатами (i,j) $(1\leqslant x\leqslant n, 1\leqslant y\leqslant m)$ лежит $a_{x,y}$ грамм снега (Даня живёт в странном районе Москвы, поэтому $a_{x,y}$ может быть даже отрицательным). Даня хочет убрать часть снега, но ещё не решил, какую именно часть он уберёт. Чтобы сделать правильный выбор, он просит помощи у вас.

Он q раз спрашивает у вас для чисел l_1, l_2, r_1, r_2 $(1 \leqslant l_1 \leqslant r_1 \leqslant n, 1 \leqslant l_2 \leqslant r_2 \leqslant m)$, сколько суммарно грамм снега он уберёт, если уберёт все ячейки (x,y), для которых верно $l_1 \leqslant x \leqslant r_1$ и

$$l_2 \leqslant y \leqslant r_2$$
. Более формально, от вас требуется посчитать сумму $\sum_{x=l_1}^{l_2} \sum_{y=l_2}^{r_2} a_{x,y}$.

Формат входных данных

В первой строке входных данных содержатся три целых числа n,m и q $(1 \leqslant n,m,q \leqslant 10^5,1 \leqslant n\cdot m \leqslant 10^5)$ — размеры площадки (количество строк и количество столбцов соответственно) и количество запросов.

В каждой из следующих n строк содержатся m целых чисел.

Числа в i-й строке обозначают количество снега, который лежит в каждой ячейке i-й строки, то есть $a_{i,1}, a_{i,2}, \ldots, a_{i,m} \ (-10^9 \leqslant a_{i,j} \leqslant 10^9)$.

В следующих q строках содержатся запросы от Дани.

Каждый запрос содержит 4 натуральных числа l_1, r_1, l_2, r_2 $(1 \le l_1 \le r_1 \le n, 1 \le l_2 \le r_2 \le m)$, обозначающих границы подпрямоугольника, в котором необходимо посчитать сумму.

Формат выходных данных

Выведите q строк: в i-й строке – ответ на i-й запрос – искомую сумму.

Система оценки

Подзадача	Ограничения		Баллы	Необходимые подзадачи
подзадача	n, m	q	Баллы	песоходимые подзадачи
1	$n, m \leq 50$	$q \leqslant 100$	15	_
2	$n, m \leqslant 100$	$q \leqslant 50000$	25	1
3	$n, m \leqslant 700$	_	15	1 - 2
4	_	_	45	1 - 3

Пример

стандартный ввод	стандартный вывод		
3 3 4	12		
1 3 2	9		
0 -1 4	7		
5 -3 1	1		
1 1 3 3			
1 1 2 3			
1 3 3 3			
3 3 3 3			

Замечание

Обратите внимание: если вы используете язык Python 3, то рекомендуется отсылать решения под PyPy 3.

Сборы к муниципальному этапу. Префиксные суммы Россия, 20 ноября 2025

Для первого запроса необходимо посчитать сумму

 $a_{1,1} + a_{1,2} + a_{1,3} + a_{2,1} + a_{2,2} + a_{2,3} + a_{3,1} + a_{3,2} + a_{3,3} = 1 + 3 + 2 + 0 + (-1) + 4 + 5 + (-3) + 1 = 12.$

Второй запрос: $a_{1,1} + a_{1,2} + a_{1,3} + a_{2,1} + a_{2,2} + a_{2,3} = 1 + 3 + 2 + 0 + (-1) + 4 = 9$.

Третий запрос: $a_{1,3} + a_{2,3} + a_{3,3} = 2 + 4 + 1 = 7$.

Четвёртый запрос: $a_{3,3} = 1$.

Задача С. Принц и королевство

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Принц — правитель некоторого королевства, которое состоит из n городов. Сейчас в i-м городе живёт a_i человек.

В следующие q лет в королевство будут приезжать новые жители, причём селиться они будут в городах с самым большим населением. В j-й год в **каждый** из k_j городов с максимальным населением поселятся d_i новых людей.

Принцу стало интересно, сколько человек будет жить в каждом городе через q лет. Помогите ему ответить на этот вопрос.

Формат входных данных

В первой строке входных данных содержатся два целых числа n и q ($1 \le n, q \le 10^5$) — количество городов в королевстве и количество лет, в течение которых будет изменяться население города.

Во второй строке входных данных содержатся числа a_1, a_2, \ldots, a_n $(1 \leqslant a_i \leqslant a_{i+1} \leqslant 10^9)$ — количество человек, проживающих в каждом городе.

Следующие q строк описывают происходящие изменения.

В *i*-й строке содержатся два целых числа k_i и d_i ($1 \le k_i \le n, 0 \le d_i \le 10^9$), означающие, что в i-й год в k_i городах с максимальным населением население увеличится на d_i (население увеличится в каждом городе).

Формат выходных данных

В единственной строке выходных данных выведите n чисел a_1, \ldots, a_n — количество жителей в каждом городе через q лет.

Система оценки

Подзадача	Ограничения		Баллы	Необходимые подзадачи
Подзадача	n	q	Danibi	пеооходимые подзадачи
1	$n \leqslant 100$	$q \leqslant 1000$	10	_
2	$n \leqslant 50000$	$q \leqslant 100$	25	_
3	_	_	65	1 - 2

Пример

стандартный ввод	стандартный вывод		
4 2	10 20 40 150		
10 20 30 40			
2 10			
1 100			

Замечание

Через 1 год количество жителей в городах станет: 10, 20, 40, 50.

Через 2 года количество жителей в городах станет: 10, 20, 40, 150.

Задача D. Новый год

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Приближается новый год, а это значит, что скоро все будут дарить друг другу подарки. Вася хочет подарить одному из своих друзей на новый год два массива a и b одинаковой длины n. Однако перед этим ему стало интересно, насколько эти массивы похожи между собой.

Чтобы выяснить это, Вася решил посчитать количество отрезков [l;r] $(1 \le l \le r \le n)$ таких, что $a_l + a_{l+1} + \cdots + a_r = b_l + b_{l+1} + \cdots + b_r$ (иными словами, сумма на этом отрезке в массиве a совпадает с суммой на этом отрезке в массиве b). Помогите Васе посчитать это значение.

Формат входных данных

В первой строке входных данных содержится целое число $n~(1\leqslant n\leqslant 10^5)$ — длина массивов.

Во второй строке входных данных содержатся n целых чисел $a_1, a_2, \ldots, a_n \ (-10^9 \leqslant a_i \leqslant 10^9)$ — элементы первого массива.

В третьей строке входных данных содержатся n целых чисел $b_1, b_2, \ldots, b_n \ (-10^9 \leqslant b_i \leqslant 10^9)$ — элементы второго массива.

Формат выходных данных

В единственной строке выходных данных выведите одно целое число — количество отрезков [l;r], на которых суммы в a и b равны.

Система оценки

Подзадача	Ограничения		Баллы	Необходимые подзадачи	
Подзадача	n	a_i, b_i	Баллы	пеооходимые подзадачи	
1	$n \leqslant 100$	_	10	_	
2	$n \leqslant 1000$	_	30	1	
3	_	$a_i = b_i$	10	_	
4	_	_	50	1 - 3	

Пример

стандартный ввод	стандартный вывод		
4	4		
-1 1 2 4			
-3 3 0 4			

Замечание

В примере подходят следующие отрезки:

- 1) l = 1, r = 2
- 2) l = 2, r = 3
- 3) l = 2, r = 4
- 4) l = 4, r = 4

Задача Е. Алексей и день рождения

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Жук Алексей собирается отпраздновать свой день рождения. На праздник он собирается пригласить n своих друзей, которые живут в целых точках на числовой прямой: i-й друг живёт в точке x_i .

У Алексея очень много друзей, которые живут очень далеко, поэтому он не может пригласить всех, а может пригласить только какой-то набор людей с последовательными номерами, то есть людей, живущих в точках с координатами $x_l, x_{l+1}, \ldots, x_{r-1}, x_r$. Кроме того, он ещё не решил, где именно он проведёт мероприятие.

Если Алексей решит пригласить людей с номерами на отрезке [l;r] и проведёт день рождения в целочисленной точке a, то тогда суммарное время, которое друзья потратят на то, чтобы добраться,

равно
$$f(a) = \sum_{i=1}^{T} (x_i - a)^2$$
.

Алексей уже придумал q вариантов, но не может выбрать среди них лучший. При этом для некоторых вариантов он уже определил и список гостей, и место проведения, а для некоторых определил лишь список гостей. Каждый вариант описывается числом t.

- 1) Если t = 0, то Алексей уже выбрал отрезок [l;r], означающий, что он пригласит гостей, живущих в точках x_l, \ldots, x_r , а также решил, что проведёт праздник в точке a. В таком случае необходимо вычислить f(a).
- 2) Если t=1, то Алексей уже выбрал отрезок [l;r], означающий, что он пригласит гостей, живущих в точках x_l, \ldots, x_r , но ещё не решил, где именно он проведёт праздник. В таком случае необходимо найти минимальное значение f(a) среди всех целых точек a на прямой (a может совпадать или не совпадать с точкой, в которой живёт какой-то друг).

 ${
m K}$ сожалению, из-за занятости Алексей не может посчитать это сам, поэтому вам предстоит помочь ему посчитать ответ для каждого из q вариантов.

Формат входных данных

В первой строке входных данных содержатся два целых числа n и q ($1 \le n, q \le 10^5$) — количество друзей и количество вариантов.

Во второй строке входных данных содержатся n целых чисел $x_1, x_2, \ldots, x_n \ (-10^5 \leqslant x_i \leqslant 10^5)$ — точки, в которых живут друзья.

В следующих q строках содержатся запросы, обозначающие варианты.

i-я из следующих q строк содержит несколько чисел.

Первое число t_i ($0 \le t_i \le 1$) обозначает тип варианта.

Если $t_i=0$, то за ним следуют 3 целых числа $l_i, r_i, a_i \ (1\leqslant l_i\leqslant r_i\leqslant n, -10^5\leqslant a_i\leqslant 10^5)$ — границы отрезка, обозначающего номера гостей, и точка встречи.

Если $t_i = 1$, то за ним следуют 2 целых числа l_i, r_i $(1 \leqslant l_i \leqslant r_i \leqslant n)$ — границы отрезка, обозначающего номера гостей, для которого нужно вычислить оптимальную точку встречи.

Формат выходных данных

Выведите q строк: в i-й строке — ответ на i-й запрос.

Если во входных данных $t_i = 0$, выведите в i-й строке значение $f(a_i)$. Если $t_i = 1$, выведите в i-й строке минимальное значение f(a) по всем **целочисленным** значениям a.

Система оценки

Сборы к муниципальному этапу. Префиксные суммы Россия, 20 ноября 2025

Подзадача			Баллы	Необходимые подзадачи	
Подзадача	n,q	x_i	t_i	Баллы	пеооходимые подзадачи
1	$n, q \leq 100$	$0 \leqslant x_i \leqslant 10$	_	10	_
2	_	_	$t_i = 0$	40	_
3	_	$0 \leqslant x_i \leqslant 1$		15	_
4	_	_	_	35	1 - 3

Пример

стандартный вывод		
17		
14		
13		
0		

Замечание

Для первого запроса необходимо посчитать:

$$(2-2)^2+(-1-2)^2+(2-2)^2+(4-2)^2+(0-2)^2=0+9+0+4+4=17$$
 Для второго запроса: $(-1-1)^2+(2-1)^2+(4-1)^2=4+1+9=14$

Для третьего запроса можно показать, что оптимальным значением a является a=2 и тогда:

$$(2-2)^2 + (-1-2)^2 + (2-2)^2 + (4-2)^2 = 0 + 9 + 0 + 4 = 13$$

 $(2-2)^2+(-1-2)^2+(2-2)^2+(4-2)^2=0+9+0+4=13$ Для четвёртого запроса можно показать, что оптимально взять a=2 и тогда: $(2-2)^2=0$