Задача А. Правильная скобочная последовательность

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вам задана строка s, состоящая из открывающих и закрывающих скобок четырех видов <>, $\{\}$, [], (). Все скобки делятся на два типа: открывающие и закрывающие. Разрешается заменить любую скобку на любую другую такого же типа. Например, скобку < можно заменить на скобку $\{$, но нельзя заменить на скобку $\}$ или >.

Далее приводится стандартное определение правильной скобочной последовательности, с которым вы возможно уже знакомы.

Определим правильную скобочную последовательность. Пустая строка считается таковой. Пусть строки s1 и s2 являются правильными скобочными последовательностями, тогда строки < s1 > s2, s1s2, [s1]s2, (s1)s2 также являются правильными скобочными последовательностями.

Например, строка "[[()]<>]"является правильной скобочной последовательностью, а строки "[(])"и "[()()— нет.

Определите наименьшее количество замен, необходимое для того, чтобы сделать строку s правильной скобочной последовательностью.

Формат входных данных

Единственная строка содержит непустую строку s, состоящую только из открывающих и закрывающих скобок, заданных четырех видов. Длина строки s не превосходит 10^6 .

Формат выходных данных

Если получить правильную скобочную последовательность из строки s невозможно выведите -1. Иначе выведите наименьшее количество замен, необходимое для получения правильной скобочной последовательности из строки s.

Система оценки

Подзадача	Ограничения	Необходимые подзадачи	Баллы
1	$1 \leqslant n \leqslant 1000$	_	15
2	только скобки (и)	_	10
3	только скобки (,), [и]	2	20
4	_	1-3	55

Примеры

стандартный ввод	стандартный вывод
[<}){}	2
{()}[]	0
]]	-1

Задача В. Максимальный квадрат

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Гистограмма — это фигура, составленная из N прилегающих прямоугольников, имеющих общую базовую линию. Каждый прямоугольник называется *столбцом.* i-й столбец слева имеет ширину 1 и высоту H_i .

Требуется найти сторону **самого большого квадрата**, который можно полностью вписать внутрь гистограммы так, чтобы одна сторона квадрата была параллельна базовой линии. То есть рассматриваются только квадраты, а не произвольные прямоугольники.

Поскольку площадь квадрата определяется длиной стороны, необходимо вывести длину стороны наибольшего возможного квадрата.

Формат входных данных

В первой строке задано целое число N, $1 \leq N \leq 10^6$ Во второй строке содержатся N целых чисел H_1, H_2, \ldots, H_N , где $1 \leq H_i \leq 10^9$, обозначающих высоты столбцов гистограммы.

Формат выходных данных

Выведите одно число — длину стороны наибольшего квадрата, который можно вписать в гистограмму

Система оценки

Подзадача	Ограничения	Необходимые подзадачи	Баллы
1	$1 \leqslant n \leqslant 100$	_	15
2	$1 \leqslant n \leqslant 10^3$	1	15
3	высоты башен сначала возрастают, затем убывают	_	20
4	-	1-3	50

Примеры

стандартный ввод	стандартный вывод	
3	2	
10 2 5		
1	1	
10		
5	3	
3 4 10 6 1		

Задача С. Магические башни

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В городе магии на одной улице в один ряд стоят n магических башен. Высота башни с номером i равна h_i . В магических башнях живут маги, которые очень любят обсуждать свои открытия с другими магами.

Если два мага живут в башнях с номерами i и j (i < j), то они могут вести переписку, если все башни между ними имеют высоту **строго** меньше, чем каждая из башен i и j. То есть, если $\forall k: i < k < j \ h_k < \min(h_i, h_j)$.

Для каждого мага найдите, со сколькими магами он может вести переписку (сам с собой маг переписку вести не может).

Формат входных данных

В первой строке написано число n. $(1 \le n \le 10^6)$ — число магических башен. Во второй строке написаны n чисел h_1, \ldots, h_n $(1 \le h_i \le 10^6)$ — высоты башен

Формат выходных данных

В одну строку выведите через пробел n чисел: i-е число — это то, со сколькими магами может вести переписку маг из башни с номером i.

Система оценки

Подзадача	Ограничения	Необходимые подзадачи	Баллы
1	$h_i \leqslant 2$	_	10
2	$1 \leqslant n \leqslant 10^3$	_	20
3	$1 \leqslant n \leqslant 10^5$	2	10
4	_	1-3	60

Примеры

стандартный ввод	стандартный вывод	
5	1 2 2 2 1	
2 2 2 2 2		
1	0	
1000		
5	2 2 3 2 1	
4 2 8 3 2		

Задача D. Древняя Библиотека

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В Древней Библиотеке на полке в один ряд стоят Очень Древние Книги. За много лет там накопилось n книг. У каждой книги есть некоторый тип от 1 до k. Книг скопилось очень много, так что библиотекарь решил убрать все повторяющиеся книги, оставив **ровно** одну книгу каждого типа.

Библиотекарь хочет, чтобы оставшиеся книги образовывали **лексикографически минимальную** последовательность. Но, поскольку книги очень древние, он не может менять их местами. Все, что он может делать, это убрать с полки лишние книги.

Какой должен быть итоговый порядок книг?

Формат входных данных

В первой строке написаны числа n и k. $(1 \le n, k \le 10^6)$ — число книг и число их типов. Во второй строке написаны n чисел a_1, \ldots, a_n $(1 \le a_i \le k)$ — типы книг в том порядке, в котором они стоят на полке

Формат выходных данных

Выведите итоговый порядок типов книг на полке

Система оценки

Подзадача	Ограничения	Необходимые подзадачи	Баллы
1	$1 \leqslant k \leqslant 4$	_	5
2	$1 \leqslant n \leqslant 10^3$	_	10
3	$1 \leqslant n \cdot k \leqslant 10^6$	1,2	15
4	$1 \leqslant k \leqslant 10^3$	1-3	20
5	_	1-4	50

Примеры

стандартный ввод	стандартный вывод
5 3	1 3 2
2 1 3 1 2	
6 4	3 4 1 2
3 4 2 1 2 3	

Замечание

Пусть заданы две последовательности $A = (A_1, A_2, \dots, A_n), B = (B_1, B_2, \dots, B_m).$ Говорят, что последовательность A **лексикографически меньше** последовательности B, если выполняется одно из следующих условий:

- 1. Существует позиция i, такая что $A_j = B_j$ для всех j < i и $A_i < B_i$.
- 2. Для всех $j \leqslant \min(n,m)$ выполняется $A_j = B_j$ и n < m.