
Сборы к региональному этапу 2025-2026. День 2
, January, 4, 2026

Задача A. Среднее
Нам дана последовательность B, где Bi — это среднее арифметическое первых i чисел последо-

вательности A:
Bi =

A1 +A2 + · · ·+Ai

i

Введём префиксные суммы: Si = A1+A2+· · ·+Ai. Тогда по определению среднего имеем Bi =
Si
i ,

откуда Si = i ·Bi. Сразу заметим, что последовательность S можно явно посчитать.
Из определения последовательности S:

Si = Si−1 +Ai

значит
Ai = Si − Si−1

Таким образом, для i > 1, мы умеем вычислять Ai с помощью формулы выше. Как же вычис-
лить A1? несложно заметить, что исходя из формулы последовательности B: B1 = A1

1 = A1, тогда
A1 = B1.

Задача B. Новогодние огни
Разберем некоторые подзадачи, которые были подсказками для полного решения:
Подзадача 1. Если N ⩾ 1, ставим фонарь ровно в точку ёлки p1 (это разрешено), расстояние

до фонаря 0, до любого снеговика > 0, значит ёлка точно достанется Деду. Ответ = t1.
Подзадача 2. Один фонарь. Достаточно рассмотреть каждый интервал между соседними сне-

говиками отдельно: в крайних интервалах можно забрать всю сумму, а во внутреннем интервале
максимум равен «максимальной сумме яркостей в скользящем окне фиксированной длины» — по-
дробнее в полном решении.

Подзадача 3. Снеговиков нет, конкурента нет: все ёлки достаются Деду. Ответ
∑K

i=1 ti.
Подзадача 4. Случай M = 0 уже рассмотрен. Если M = 1, есть два крайних интервала (−∞, f1)

и (f1,+∞), каждый целиком берётся одним фонарём. Считаем суммы яркостей слева и справа от
f1 и берём сумму лучших N из этих двух чисел.

Рассмотрим полное решение. Остальные подзадачи решались, если придумать часть полного
решения и/или реализовать его недостаточно эффективно.

Напомним, что во входных данных не гарантируется, что координаты отсортированы по возрас-
танию, поэтому это необходимо сделать — получим отсортированные координаты

f1 < f2 < · · · < fM

Они разбивают прямую на M + 1 интервалов: (−∞, f1), (f1, f2), . . . , (fM−1, fM), (fM ,+∞).
Для каждого интервала будем обозначать через S сумму яркостей всех ёлок этого интервала.
Заметим, что в интервалах (−∞, f1) и (fM ,+∞) достаточно одного фонаря (можно поставить

его сразу перед f1 / после fM), чтобы забрать все ёлки интервала. Таким образом, больше одного
фонаря ставить в эти интервалы нет смысла.

Посмотрим, что происходит во внутренних интервалах.
Рассмотрим внутренний интервал (L,R) = (fj , fj+1). Двух фонарей всегда хватает, чтобы за-

брать все ёлки интервала (один ставим очень близко справа от L, второй — очень близко слева от
R), значит максимум на 2 фонаря равен S.

Осталось найти максимум на 1 фонарь. Поставим фонарь в точку q ∈ (L,R) и посмотрим, какие
ёлки он «захватывает»:

Ёлка в точке p достаётся Деду, если расстояние до фонаря меньше расстояния до ближайшего
снеговика. Во внутреннем интервале ближайший снеговик к p — это L или R, и условие превращается
в две строгие неравенства:

|p− q| < p− L и |p− q| < R− p

Получаем, что p должен лежать в интервале

(L+q
2 , R+q

2)

Страница 1 из 3

Сборы к региональному этапу 2025-2026. День 2
, January, 4, 2026

Важное замечание: длина этого интервала не зависит от q и равна

R+q
2 − L+q

2 = R−L
2

Пусть мы выбрали некоторый набор ёлок внутри интервала, и среди них минимальная позиция
pl, максимальная позиция pr. Тогда существует положение одного фонаря, которое заберёт все эти
ёлки, тогда и только тогда, когда

2 · (pr − pl) < (R− L)

Обозначим через A максимум яркости, который можно забрать в интервале (L,R) одним фо-
нарём. Давайте научимся считать эту величину.

Рассматриваем те ёлки, чьи pi попадают внутрь интервала (L,R).
Для фиксированного внутреннего интервала (L,R) пусть его ёлки идут по возрастанию p. Дер-

жим два указателя l и r и текущую сумму яркостей cur в окне [l..r]:

• увеличиваем r слева направо, прибавляя tr к cur;

• пока условие нарушено, то есть 2 · (pr − pl) ⩾ (R− L), двигаем l вправо и вычитаем tl из cur;

• обновляем A = max(A, cur).

Итак, для внутреннего интервала у нас есть:

• A — максимум на 1 фонарь,

• S — максимум на 2 фонаря.

Осталось научиться комбинировать различные интервалы между собой. Для каждого интерва-
ла у нас есть ai, si — сколько мы получим, если поместим в интервал 1 и 2 фонаря соотвественно.
Давайте считать «профит», который нам приносит каждый фонарь: первый фонарь интервала при-
несет нам ai яркости, второй: si − ai яркости. Тогда, давайте набирать фонари жадно — каждый
раз брать тот фонарь, который приносит нам больше яркости. Несложно показать, что это будет
оптимальная стратегия.

Получается, что для решения задачи нужно было:

1. каждый интервал разбить на 1 или 2 оптимальных фонаря

2. узнать, сколько яркости дает нам очередной фонарь, посчитав A и S

3. взять самые большие N значений среди полученных яркостей.

С учетом сортировки, решение будет работать за O(K logK +M logM).

Задача C. Новогодняя MST
Первое наблюдение: если a < b, то a mod b = a, значит w(a, b) = min(a, b mod a) = b mod a. То

есть для a < b всегда w(a, b) = b mod a.
Подзадача 1. Если N ⩽ 1000, можно построить граф явно: в нем получится O(n2) ребер, и на

этом графе можно построить MST любым удобным способом — например, алгоритмом Краскала,
Прима или Борувки. Асимптотика такого решения будет O(n2 log n), что вполне приемлемо при
данных ограничениях.

Подзадача 2. Заметим, что из ограничения следует, что различных pi может быть не более
1000. А что будет, если pi = pj при i ̸= j? Заметим, что такие вершины мы можем соединить ребром
веса 0, и «сжать» их в одну вершину. Таким образом, в графе можно оставить только различные
pi, и в нем будет достаточно мало вершин, и можно будет воспользоваться решением из первой
подзадачи.

Подзадача 3. Аналогично второй подзадаче, сожмем различные веса в один. Тогда останется
n ⩽ 3 · 104 вершин. Текущий граф — полный, значит, на нем можно воспользоваться алгоритмом

Страница 2 из 3

Сборы к региональному этапу 2025-2026. День 2
, January, 4, 2026

Прима для полных графов, что будет работать за O(n2 +m), где m будет порядка 5 · 108. Если не
хранить граф явно, это легко вписывается в ограничения задачи по времени и по памяти.

Для полного решения аналогично сожмем различные pi в одну. Положим как M максимальное
из всех pi.

Для каждого значения px мы переберём все его кратные: k · px ⩽ M , то есть k = 1, 2, . . . ,
⌊
M
px

⌋
.

Для каждого такого кратного k · px мы хотим найти вершину y со значением py, которая:

• является минимальной среди всех вершин, для которых py ⩾ k · px;

• а в случае k = 1 берём минимальную вершину со строго большим значением, то есть py > px
(чтобы не выбрать саму вершину x).

Найдя такую вершину y, мы добавляем ребро (x, y) в список рёбер, которые будем обрабатывать
(то есть потенциально использовать в MST), и называем его хорошим.

Лемма 1: существует MST только из хороших ребер.
Сначала научимся решать задачу, используя Лемму 1, а потом докажем её.
Ответим на вопрос — сколько хороших ребер существует? По построению, для вершины с весом

x мы добавили не более M
x ребер. Таким образом, суммарно мы добавили не более

M

1
+

M

2
+ · · ·+ M

M
= O(M logM)

ребер. Таким образом, в хорошем графе O(n) вершин и O(M logM) ребер. Тогда, наивно написанный
алгоритм Краскала/Прима отработает на этом графе за O(M log2M), что пройдет четвертую
подзадачу.

Пятную подзадачу можно было решить таким образом: заметим, что в алгоритме Краска-
ла самая долгая часть — сортировка ребер по весам. Заметим, что веса ⩽ M , тогда поймем, что
можно было воспользоваться сортировкой подсчетом, и получить асимптотику O(M logMα(n)), что
легко укладывается в ограничения. Также существовали альтернативные (и достаточно быстрые)
решения, использующие алгоритм Борувки.

Доказательство Леммы 1.
Предположим противное: не существует MST, состоящего только из хороших рёбер. Тогда возь-

мем любое MST — тогда в нем есть не хорошее ребро a − b. Пусть pa < pb, и пусть k таково,
что k · pa ⩽ pb < (k + 1) · pa. Тогда, поскольку мы не выделили ребро (a, b), существуют вершины
c1, c2, . . . , cn такие, что выполняется k · pa ⩽ pc1 < pc2 < · · · < pcn < pb, а также (в случае k = 1)
дополнительно требуется pa < pc1 . Но тогда мы выделили рёбра (a, c1), (c1, c2), (c2, c3), . . . , (cn−1, cn),
(cn, b). Их суммарная стоимость равна pb − k · pa = pb mod pa. Следовательно, мы можем удалить
ребро (a, b) и вместо него поставить путь из a в b (целиком или частично), и при этом граф останется
связным, а суммарный вес станет меньше или равен прежнему.

Получили противоречие — значит, существует MST только из хороших ребер, и MST, которое
мы найдем, будет минимальным и во всем графе.

Задача D. Новогодние билетики
Рассмотрим бинарную операцию op, которая будет вычислена в последнюю очередь. Тогда все

выражение будет равно op(expr1, expr2), где expr1 — значение выражения слева от операнда, а
expr2 — справа. Таким образом, для каждой строки из цифр s можно найти множество значений
vals[s], которые могут получиться, если расставить в этой строке операции и скобки. Это может
быть либо просто число s, либо op(a, b), где op — любая операция, a ∈ vals[s1], b ∈ vals[s2], s = s1s2.

Несложно заметить, что |vals[s]| ⩽ 2 · 10len(s), потому что для любой операции
len(op(a, b)) ⩽ len(a) + len(b), где len(x) — количество десятичных цифр в числе x.

Также, заметим, что для строк длины 6 не нужно искать всё множество vals, а достаточно
только проверить, принадлежит ли ему 100. Аналогично, для множеств для строк длины 5 не нужно
находить множество целиком, достаточно найти только значения, которые при применении операции
с числом длины 1 могут дать 100.

Также, нужно не забыть про операцию отрицания.
Такое решение укладывается в ограничения и находит все решения.

Страница 3 из 3

