Задача А. Проверочная работа по математике. 5 класс.

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Инструкция по выполнению заданий проверочной работы

На выполнение работы по математике отводится один урок (не более 45 минут). Работа состоит из одной части и включает в себя 7 заданий.

Ответы на задания запишите в поля ответов в тексте работы. Если Вы хотите изменить ответ, зачеркните его и запишите рядом новый.

При выполнении работы не разрешается пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. В целях экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения работы у Вас останется время, то Вы сможете вернуться к пропущенным заданиям.

Работа, содержащая хотя бы один зачеркнутый или неверный ответ, оценивается в ноль баллов (неудовлетворительно). Ученики, получившие оценку неудовлетворительно, навсегда лишаются возможности посещать занятия кружка Т-Поколение.

Желаем успеха!

На вход подается целое число n ($1 \le n \le 10^{18}$), которое используется в качестве параметра в каждой задаче. Ответ на каждую задачу следует выводить по модулю 998 244 353.

1. $1 + 2 + \ldots + n = ?$

2. $1^2 + 2^2 + \ldots + n^2 = ?$

3. $1^3 + 2^3 + \ldots + n^3 = ?$

4. $1 + 22 + \ldots + 22^{n-1} = ?$

5. $1 + 2 \cdot 22 + 3 \cdot 22^2 + \ldots + n \cdot 22^{n-1} = ?$

6. $1 + 4 \cdot 22 + 9 \cdot 22^2 + \ldots + n^2 \cdot 22^{n-1} = ?$

7. Сколько существует строк длины n, состоящих из символов a, b, c, d, которые **не содержат** подстрок-палиндромов длины больше 1?

Задача В. Проверочная работа по математике. 6 класс.

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Инструкция по выполнению заданий проверочной работы

На выполнение работы по математике отводится один урок (не более 45 минут). Работа состоит из одной части и включает в себя 6 заданий.

Ответы на задания запишите в поля ответов в тексте работы. Если Вы хотите изменить ответ, зачеркните его и запишите рядом новый.

При выполнении работы не разрешается пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. В целях экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения работы у Вас останется время, то Вы сможете вернуться к пропущенным заданиям.

Работа, содержащая хотя бы один зачеркнутый или неверный ответ, оценивается в ноль баллов (неудовлетворительно). Ученики, получившие оценку неудовлетворительно, навсегда лишаются возможности посещать занятия кружка Т-Поколение.

Желаем успеха!

На вход подается целое число n ($1 \le n \le 10^6$), которое используется в качестве параметра в каждой задаче. Сумма элементов пустого множества полагается равной нулю.

Во задачах 1-6 требуется вычислить $Q=S_1\oplus\ldots\oplus S_n$. Где S_n вычисляется по модулю $998\ 244\ 353$ и зависит от номера задачи.

1.
$$S_n = \binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \ldots + \binom{2n}{n}$$

2.
$$S_n = \binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \ldots + \binom{n}{n}^2$$

3.
$$S_n = 1 \cdot \binom{n}{1} + 4 \cdot \binom{n}{2} + \ldots + n^2 \cdot \binom{n}{n}$$

4.
$$S_n = \binom{n}{0} + \binom{n}{2} \cdot n^2 + \binom{n}{4} \cdot n^4 + \dots + \binom{n}{2k} \cdot n^{2k}, \ k = \left\lfloor \frac{1}{2}n \right\rfloor$$

- 5. S_n равно количеству строк длины 3n, которые состоят из n символов a, n символов b и n символов c, при этом никакой символ a не идет позже символа c.
- 6. Дана слепая ладья, которая живет на бесконечной шахматной доске. За один ход она может переместиться в любую соседнюю клетку. S_n полагается равным количеству замкнутых маршрутов длины 2n по модулю $998\,244\,353$.

Т-Поколение 2025-2026. Параллель X. Комбинаторика Россия, Москва, 28 октября, 2024

Задача С. Проверочная работа по математике. 7 класс.

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Инструкция по выполнению заданий проверочной работы

На выполнение работы по математике отводится один урок (не более 45 минут). Работа состоит из одной части и включает в себя 5 заданий.

Ответы на задания запишите в поля ответов в тексте работы. Если Вы хотите изменить ответ, зачеркните его и запишите рядом новый.

При выполнении работы не разрешается пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. В целях экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения работы у Вас останется время, то Вы сможете вернуться к пропущенным заданиям.

Работа, содержащая хотя бы один зачеркнутый или неверный ответ, оценивается в ноль баллов (неудовлетворительно). Ученики, получившие оценку неудовлетворительно, навсегда лишаются возможности посещать занятия кружка Т-Поколение.

Желаем успеха!

На вход подается пара целых чисел n и m ($1 \le n, m \le 10^6$), которые используются в качестве параметров в каждой задаче. Ответ на задачи 1-4 следует выводить по модулю $998\,244\,353$.

- 1. Сколько существует способов расставить n девочек и n мальчиков в ряд так, чтобы на любом префиксе девочек было не меньше, чем мальчиков?
- 2. Сколько существует способов расставить n девочек и m мальчиков в ряд так, чтобы на любом префиксе девочек было не меньше, чем мальчиков?
- 3. Просуммируйте по всем $\Pi C \Pi$ длины 2n количество циклических сдвигов, которые тоже являются $\Pi C \Pi$.
- 4. Для всех скобочных последовательностей длины (2n+1) (необязательно правильных) найдите максимальное значение k, где k это количество циклических сдвигов, которые заканчиваются на закрывающую скобку и первые 2n символов, которых образуют ПСП.
- 5. Выведите n-ю по счету ПСП, которая состоит из 2m скобок. Символ «(» лексикографически меньше, чем «)». Если такой перестановки не существует, то выведите лексикографически наибольшую.

Задача D. Проверочная работа по математике. 8 класс.

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Инструкция по выполнению заданий проверочной работы

На выполнение работы по математике отводится один урок (не более 45 минут). Работа состоит из одной частей и включает в себя 5 заданий.

Ответы на задания запишите в поля ответов в тексте работы. Если Вы хотите изменить ответ, зачеркните его и запишите рядом новый.

При выполнении работы не разрешается пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. В целях экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения работы у Вас останется время, то Вы сможете вернуться к пропущенным заданиям

Работа, содержащая хотя бы один зачеркнутый или неверный ответ оценивается в ноль баллов (неудовлетворительно). Ученики, получившие оценку неудовлетворительно навсегда лишаются возможности посещать занятия кружка Т-Поколение.

Желаем успеха!

На вход подается целое число n ($1 \le n \le 10^6$), которое используется в качестве параметра в каждой задаче. Сумма элементов пустого множества полагается равной нулю. Ответы на все задания следует выводить по модулю $998\,244\,353$.

1. Пусть S_n — множество перестановок π длины n. Вычислите сумму:

$$\sum_{\pi \in S_n} \sum_{\sigma \in S_n} \sum_{i=1}^n |\pi(i) - \sigma(i)|$$

- 2. Пусть $U_n \subseteq S_n$ множество перестановок π таких, что $\pi(i) \neq i$ для любых $i \in \{1, 2, ..., n\}$. Какую мощность имеет множество U_n ?
- 3. Сколько существует пар перестановок π и τ длины n таких, что $\pi(i) \neq \tau(i)$ для любых $i \in \{1, 2, \dots, n\}$?
- 4. Вычислите сумму:

$$\sum_{\pi \in U_n} \sum_{\sigma \in U_n} \sum_{i=1}^n |\pi(i) - \sigma(i)|$$

5. Пусть $C(\pi)$ равно количеству множеств $A \subseteq \{1, 2, ..., n\}$ таких, что для любого $x \in A$ выполнено $\pi(x) \in A$. Вычислите количество перестановок $\pi \in S_n$, для которых $C(\pi) = 8$.

Все ответы следует выводить по модулю 998 244, 353.

Т-Поколение 2025-2026. Параллель X. Комбинаторика Россия, Москва, 28 октября, 2024

Задача Е. Проверочная работа по математике. 9 класс.

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Инструкция по выполнению заданий проверочной работы

На выполнение работы по математике отводится один урок (не более 45 минут). Работа состоит из одной частей и включает в себя 5 заданий.

Ответы на задания запишите в поля ответов в тексте работы. Если Вы хотите изменить ответ, зачеркните его и запишите рядом новый.

При выполнении работы не разрешается пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. В целях экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения работы у Вас останется время, то Вы сможете вернуться к пропущенным заданиям

Работа, содержащая хотя бы один зачеркнутый или неверный ответ оценивается в ноль баллов (неудовлетворительно). Ученики, получившие оценку неудовлетворительно навсегда лишаются возможности посещать занятия кружка Т-Поколение.

Желаем успеха!

На вход подаются целые числа $n, m, k \ (1 \le n, m, k \le 10^6)$, которые используются в качестве параметров в каждом задании. Сумма элементов пустого множества полагается равной нулю.

Ответы на задания 1,3,4 требуется вывести по модулю 998 244 353

- 1. Есть n пронумерованных воздушных шаров, которые надо раскрасить в m цветов так, чтобы каждый цвет встречался хотя бы один раз. Выведите количество способов раскрасить шарики.
- 2. Посчитайте количество чисел от 1 до 10^{18} , которые не взаимно просты с m.
- 3. Есть n красных, n синих и n белых автомобилей. Сколько есть способов выбрать среди них m автомобилей так, чтобы среди них встретился хотя бы один красный, хотя бы один синий и хотя бы один белый автомобиль. Все 3n автомобилей считаются различными.
- 4. Вычислите количество способов разбить число n в упорядоченную сумму k слагаемых, где каждое слагаемое это число от 0 до m.
- 5. Есть параллелепипед $n \times m \times k$, состоящий из единичных кубов. Прямая проходит из одного угла этого параллелепипеда в другой. Считается, что прямая проткнула кубик, если она содержит хотя бы одну его внутреннюю точку. Вычислите количество кубиков, которые протыкает эта прямая.

Задача F. Проверочная работа по математике. 10 класс.

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Инструкция по выполнению заданий проверочной работы

На выполнение работы по математике отводится один урок (не более 45 минут). Работа состоит из одной частей и включает в себя 5 заданий.

Ответы на задания запишите в поля ответов в тексте работы. Если Вы хотите изменить ответ, зачеркните его и запишите рядом новый.

При выполнении работы не разрешается пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. В целях экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения работы у Вас останется время, то Вы сможете вернуться к пропущенным заданиям

Работа, содержащая хотя бы один зачеркнутый или неверный ответ оценивается в ноль баллов (неудовлетворительно). Ученики, получившие оценку неудовлетворительно навсегда лишаются возможности посещать занятия кружка Т-Поколение.

Желаем успеха!

На вход подаются целые числа $n, m \ (1 \le n, m \le 10^6)$, которые используются в качестве параметров в каждой из задач. Сумма элементов пустого множества полагается равной нулю. В задачах 1, 2, 4 ответ требуется вывести по модулю 998244353.

- 1. Вычислите количество связных графов без циклов на n пронумерованных вершинах.
- 2. Посчитать количество строк длины n на алфавитом $\{1, 2, ..., m\}$, в которых каждый символ от 1 до m встречается нечетное количество раз.
- 3. Вычислите $S_1 \oplus \ldots \oplus S_n$, где:

$$S_k = \left(\binom{k}{0} + \binom{k}{4} m + \ldots + \binom{k}{4t} m^t \right) \bmod 998353244, \quad t = \left\lfloor \frac{1}{4} k \right\rfloor$$

4. Сколько есть перестановок длины n, в которых длина каждого цикла не меньше чем m?

Задача G. Проверочная работа по математике. 11 класс.

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Инструкция по выполнению заданий проверочной работы

На выполнение работы по математике отводится один урок (не более 45 минут). Работа состоит из одной части и включает в себя 5 заданий.

Ответы на задания запишите в поля ответов в тексте работы. Если Вы хотите изменить ответ, зачеркните его и запишите рядом новый.

При выполнении работы не разрешается пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. В целях экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения работы у Вас останется время, то Вы сможете вернуться к пропущенным заданиям.

Работа, содержащая хотя бы один зачеркнутый или неверный ответ, оценивается в ноль баллов (неудовлетворительно). Ученики, получившие оценку неудовлетворительно, навсегда лишаются возможности посещать занятия кружка Т-Поколение.

Желаем успеха!

На вход подается целое число $n, m \ (1 \leqslant n, m \leqslant 10^6)$, которое используется в качестве параметра в каждой задаче. Ответы на все задания следует выводить по модулю $998\ 244\ 353$.

- 1. Выведите $gcd(F_n, F_m)$, где $F_k k$ -е число Фибоначчи: $F_0 = 0$, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$.
- 2. Сколько существует массивов x_1, \ldots, x_n $(0 \leqslant x_i \leqslant m)$ таких, что $x_1 + \ldots + x_n = m$ таких, что все числа можно уравнять с помощью следующей операции: берется пара индексов i < j таких, что $x_i, x_j > 0$, а затем значения x_i и x_j уменьшаются на единицу.
- 3. Вычислите количество связных графов на n вершинах, где каждое ребро лежит ровно на одном простом цикле, при чем этот цикл имеет длину 3.

Задача Н. Дополнительный вопрос

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На вход подается строка s, состоящая из строчных латинских букв.

Выведите количество различных строк без подряд стоящих одинаковых символов, которые можно получить из s перестановкой букв. Ответ следует выводить по модулю $998\,244\,353$.

Формат входных данных

В единственной строке указана строка s ($1 \le |s| \le 5000$).

Формат выходных данных

Выведите единственное число — ответ на задачу по модулю 998 244 353.

Примеры

стандартный ввод	стандартный вывод		
cool	6		
combinatorics	475372800		

Задача I. BBQ

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Снук устраивает еще одну барбекю-вечеринку.

На этот раз он приготовит одну порцию барбекю.

У него есть запас из n упаковок барбекю, i-я упаковка барбекю содержит один шампур, a_i кусочков говядины и b_i кусочков зеленого перца. Все шампуры в этих упаковках разные и различимые, в то время как все кусочки говядины и все кусочки зеленого перца, соответственно, неразличимы.

Чтобы приготовить барбекю, он выбирает две упаковки барбекю, извлекает все содержимое из выбранных упаковок, то есть два шампура и несколько кусочков говядины или зеленого перца. (Оставшиеся упаковки барбекю не будут использованы.) Затем все эти кусочки еды нанизываются сразу на два шампура в произвольном порядке.

Сколько различных способов есть у Снука, чтобы приготовить барбекю? Два способа приготовления барбекю различаются, если и только если наборы использованных шампуров различны или порядки кусочков еды различны. Поскольку это число может быть чрезвычайно большим, найдите его по модулю 10^9+7 .

Формат входных данных

Первая строка содержит целое число $n\ (1\leqslant n\leqslant 200\,000).$

Следующие n строк содержат пары $a_i, b_i \ (1 \le a_i, b_i \le 2\,000)$

Формат выходных данных

Выведите количество различных способов, которыми Снук может приготовить порцию барбекю, по модулю $10^9 + 7$.

Пример

стандартный ввод	стандартный вывод		
3	26		
1 1			
1 1			
2 1			

Задача Ј. Черепашка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Черепашка хочет добраться из клетки (1,1) в клетку (n,m). За один ход из клетки (x,y) она может попасть в клетки (x,y+1) или (x+1,y).

Но есть одна проблема — на доске, где гуляет черепашка, так же живут k злых зайцев, а именно i-й заяц живет в клетке (x_i, y_i) . Черепашка не хочет видеться с зайцами, поэтому избегает этих клеток.

Вычислите количество способов построить маршрут для черепашки так, чтобы он не проходил через клетки, где живут зайцы.

Формат входных данных

В первой строке указано число t ($1 \le t \le 100$) — количество наборов входных данных.

В первой строке каждого набора указаны числа $n, m, k \ (1 \le n, m \le 10^5, 1 \le k \le 5\,000).$

В следующих k строках указаны пары чисел $x_i, y_i \ (1 \leqslant x_i \leqslant n, 1 \leqslant y_i \leqslant m).$

Гарантируется, что сумма k по всем наборам входных данных не превосходит $5\,000$.

Формат выходных данных

Для каждого набора входных данных выведите ответ на задачу по модулю 998 244 353.

Пример

Задача К. Резонансные частоты

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В солнечной системе в далеком будущем люди смогли заселить n планет (включая искусственно созданные), между которыми для экстренных случаев они наладили радиосвязь.

Радиосвязь представляет собой набор из m односторонних каналов связи, i-й канал передает информацию из планеты с номером v в планету с номером u, при этом работая на частоте i. В силу жесткой иерархии планет в построенной системе радиосвязи нет циклов.

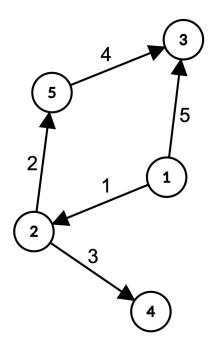
Потом случилось страшное — людей нашли пришельцы, которые стали посылать свои сигналы в солнечную систему на частоте x. Таким образом некоторые пути передачи информации начали резонировать с сигналами пришельцев.

Пусть какой-то путь проходит через вершины v_1, v_2, \ldots, v_k $(k \ge 2)$ и пару вершин (v_i, v_{i+1}) соединяет ребро e_i . Тогда такой путь резонирует с сигналом, если наибольший общий делитель чисел e_1, \ldots, e_{k-1} в точности равен x.

Люди хотят понять, какое количество путей подверглось угрозе, но вычисления оказались слишком громоздки. Поэтому они просят вас помочь спасти человечество и вычислить количество резонирующих путей по модулю 10^9+7 .

Формат входных данных

В первой строке заданы три числа n, m, x — количество планет, количество каналов радиосвязи и частота сигнала пришельцев.


В последующих m строках указано по паре чисел v_i и u_i — концы i-го канала радиосвязи.

$$2 \leqslant n \leqslant 10^{5}$$
$$1 \leqslant m \leqslant 10^{5}$$
$$1 \leqslant x \leqslant m$$
$$1 \leqslant v, u \leqslant n$$

Примеры

стандартный ввод	стандартный вывод
5 5 1	4
1 2	
2 5	
2 4	
5 3	
1 3	
5 5 2	2
1 2	
2 5	
2 4	
5 3	
1 3	

Замечание

В первом примере подходят пути, проходящие по вершинам [1,2], [1,2,4], [1,2,5], [1,2,5,3]. Во втором примере подходят только пути [2,5] и [2,5,3].

Задача L. Посчитай GCD последовательности

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Рассмотрим всевозможные последовательности (a_1, a_2, \ldots, a_n) длины n, которые состоят из чисел от 1 до k. Вам требуется найти суммарное значение $gcd(a_1, \ldots, a_n)$ по всем таким последовательностям.

Так как ответ на задачу может быть очень большим, то выведите его по модулю $10^9 + 7$.

Формат входных данных

В единственной строке указана пара чисел n и k ($2 \le n \le 10^5$, $1 \le k \le 10^5$).

Формат выходных данных

Выведите единственное число — ответ на задачу.

Примеры

стандартный ввод	стандартный вывод		
3 2	9		
3 200	10813692		
100000 100000	742202979		

Замечание

$$gcd(1,1,1) + gcd(1,1,2) + ... + gcd(2,2,2) = 1 \cdot 7 + 2 = 9.$$

Задача М. Сумма попарных НОКов

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Дан массив A. Необходимо найти сумму попарных НОКов всех его элементов по модулю 998244353.

Формат входных данных

Первая строка входных данных содержит одно целое положительное число $n\ (1\leqslant n\leqslant 200\,000)$ — количество элементов в массиве A.

Вторая строка входных данных содержит n целых положительных чисел A_i ($1 \leqslant A_i \leqslant 10^6$) — элементы массива A.

Формат выходных данных

Выведите одно число — сумму попарных НОКов всех элементов массива A по модулю 998244353.

Примеры

стандартный ввод	стандартный вывод		
3	11		
1 2 3			
8	313		
12 6 1 2 12 3 8 4			

Задача N. Сбалансированная строка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Скажем, что строка s ($s_i \in \{a,b\}$) k-сбалансированная, если на любом ее префиксе количество символов a и b отличается не более чем на k.

По данному числу n для каждого k от 1 до n вычислите количество k-сбалансированных строк длины 2n, которые состоят из символов a и b.

Формат входных данных

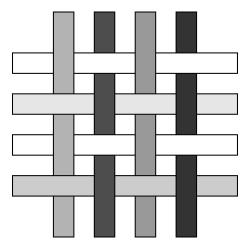
В первой строке указано единственное число $n \ (1 \le n \le 300\,000)$.

Формат выходных данных

Выведите единственное число — ответ на задачу по модулю 998 244 353

Примеры

стандартный ввод	стандартный вывод	
1	2	
2	4 6	
3	8 18 20	
4	16 54 68 70	
5	32 162 232 250 252	


Задача О. Цифровые узоры

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Аня занимается рукоделием. Сегодня она решила связать платок из полупрозрачных ниток. Каждая нитка характеризуется единственным целым числом — коэффициентом прозрачности.

Платок делается по следующей схеме: выбираются горизонтальные нитки с коэффициентами прозрачности a_1, a_2, \ldots, a_n и вертикальные с коэффициентами прозрачности b_1, b_2, \ldots, b_m . Затем они переплетаются между собой, как показано на картинке снизу, и образуют кусок ткани размера $n \times m$, состоящий ровно из nm узлов:

Пример куска ткани при n = m = 4.

После того, как сплетение затянется и не будет видно зазоров между нитками, каждый узел, образованный горизонтальной ниткой с номером i и вертикальной ниткой с номером j, превратится в клетку, которую мы будем обозначать как (i,j). Клетка (i,j) будет иметь коэффициент прозрачности $a_i + b_j$.

[†]Подквадратом куска ткани называется множество всех его клеток (i,j), таких что $x_0 \leqslant i \leqslant x_0 + d$ и $y_0 \leqslant j \leqslant y_0 + d$ для некоторых целых чисел x_0, y_0 и d $(1 \leqslant x_0 \leqslant n - d, 1 \leqslant y_0 \leqslant m - d, d \geqslant 0).$

Интересностью полученного платка будем называть количество его подквадратов[†], в которых нет пары соседних по горизонтали или по вертикали клеток с одинаковыми коэффициентами прозрачности.

Аня ещё не решила, из каких ниток плести платок, поэтому вам будут даны также q запросов изменения коэффициентов прозрачности ниток на некотором отрезке, после каждого из которых надо вывести интересность полученного платка.

Формат входных данных

Первая строка содержит три целых числа n, m и q $(1 \le n, m \le 300\,000, 0 \le q \le 300\,000)$ — количество горизонтальных ниток, количество вертикальных ниток и количество запросов изменения.

Вторая строка содержит n целых чисел $a_1, a_2, \ldots, a_n \ (-10^9 \leqslant a_i \leqslant 10^9)$ — коэффициенты прозрачности для горизонтальных ниток, нитки пронумерованы сверху-вниз.

Третья строка содержит m целых чисел b_1, b_2, \ldots, b_m ($-10^9 \leqslant b_i \leqslant 10^9$) — коэффициенты прозрачности для вертикальных ниток, нитки пронумерованы слева-направо.

В последующих q строках указаны запросы изменения. Каждый из запросов описывается четверкой целых чисел t, l, r и x ($1 \le t \le 2, l \le r, -10^9 \le x \le 10^9$). В зависимости от параметра t в запросе требуется сделать следующее:

• t = 1. Коэффициенты прозрачности для горизонтальных ниток на отрезке [l, r] увеличиваются на x (иными словами, для всех целых $l \le i \le r$ значение a_i увеличивается на x);

• t = 2. Коэффициенты прозрачности для вертикальных ниток на отрезке [l, r] увеличиваются на x (иными словами, для всех целых $l \le i \le r$ значение b_i увеличивается на x).

Формат выходных данных

Выведите (q+1) строку. В (i+1)-й строке $(0 \leqslant i \leqslant q)$ выведите одно целое число — интересность платка после применения первых i запросов.

Система оценки

Группа Баллы		Доп. ограничения			U ообу пругину	V oversommen ve
Группа	Баллы	n, m	q	t	Необх. группы	Комментарий
0	0	_	_	_	_	Тесты из условия.
1	8	$n, m \leqslant 80$	q = 0	_	_	_
2	8	$n, m \leqslant 500$	q = 0	_	1	_
3	13	$n, m \leqslant 5000$	q = 0	_	1, 2	_
4	23	$n,m\leqslant 100000$	$q\leqslant 100000$	t = 1	1–3	_
5	14	$n,m\leqslant 100000$	$q\leqslant 100000$	_	0–4	_
6	13	$n,m \leqslant 300000$	q = 0	_	1–3	_
7	11	$n,m \leqslant 300000$	$q \leqslant 300000$	t = 1	1-4, 6	_
8	10	$n,m \leqslant 300000$	$q \leqslant 300000$	_	0–7	_

Примеры

стандартный ввод	стандартный вывод
4 4 0	20
1 1 2 3	
1 2 2 3	
3 3 2	9
1 1 1	10
2 2 8	11
1 2 3 1	
2 2 3 -6	
3 2 2	8
-1000000000 0 1000000000	7
-1000000000 1000000000	7
1 1 1 1000000000	
2 2 2 -1000000000	

Замечание

В первом примере коэффициенты прозрачности клеток в получившемся платке равны:

2	3	3	4
2	3	3	4
3	4	4	5
4	5	5	6

Тогда есть следующие подквадраты, не содержащие двух соседних по вертикали или по горизонтали клеток с одинаковым коэффициентом прозрачности:

Т-Поколение 2025-2026. Параллель X. Комбинаторика Россия, Москва, 28 октября, 2024

- Каждая из 16 клеток по отдельности;
- Подквадрат с левым верхним углом в клетке (3,1) и правим нижним углом в клетке (4,2);
- Подквадрат с левым верхним углом в клетке (2,3) и правим нижним углом в клетке (3,4);
- Подквадрат с левым верхним углом в клетке (2,1) и правым нижним углом в клетке (3,2);
- Подквадрат с левым верхним углом в клетке (3,3) и правим нижним углом в клетке (4,4).

Во втором примере после первого запроса коэффициенты прозрачности горизонтальных ниток равны [1,2,2]. После второго запроса коэффициенты прозрачности вертикальных ниток равны [2,-4,2].